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Abstract 
Two main issues regarding stormwater quality models have been investigated. i) The effect of 
calibration dataset size and characteristics on calibration and validation results. ii) the optimal 
split of available data into calibration and validation subsets. Data from 13 catchments have 
been used for 3 pollutants: BOD, COD and SS. Three multiple regression models were 
calibrated and validated. The use of different data sets and different models allows viewing 
general trends. It was found mainly that multiple regression models are case sensitive to 
calibration data. Few data used for calibration infers bad predictions despite good calibration 
results. It was also found that the random split of available data into halves for calibration and 
validation is not optimal. More data should be allocated to calibration. The proportion of data to 
be used for validation increase with the number of available data (N) and reach about 35 % for 
N around 55 measured events. 

 
Keywords Stormwater, modelling, calibration, validation, uncertainty. 
 
 

INTRODUCTION 
Stormwater discharges from both combined and stormwater sewer systems are considered as a 
large source of pollutants into the receiving waters. Lately, growing concerns about the quality of 
surface waters have led to more demanding water legislation. The design of control and treatment 
facilities as well as management strategies, in many cases, require the estimation of discharged 
pollutant loads at different scales of time in some specific locations of the sewer system. A wide 
variety of stormwater quality models can be found in the literature, ranging from very simple 
ones such as the simple method (Schueler, 1987) to complex fully detailed models implemented 
in commercial softwares such as the well known Infoworks CS (Wallingford Software) and 
MouseTrap (Danish Hydraulic Institute). The complexity of a model can be quantified by the 
number of parameters or number of processes included in the model. Most of the existing models 
are based or coupled with statistical or empirical approaches, generally, incorporating conceptual 
parameters. Such hardly measurable parameters must be calibrated so the output of the model can 
match the observations used for calibration. The more the model is complex, the more 
observations are required for calibration to cover all possible conditions of use. 
 
In practice, the models are generally used for predictive purposes. Good match of calibration data 
doesn’t guarantee that future predictions will be good. To increase confidence in prediction 
ability of a model, validation is performed. There is not yet a complete agreement on what 
validation can or should encompass. Nevertheless some methods have been widely admitted like 
the split sample validation. Split sample validation consists of splitting available data into two 
samples. One sample is used to calibrate the model and the other one to test the prediction ability 
of the model. Independently of the modelling approach and research field, available data are 
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generally splitted randomly into halves (e.g. Kerlinger and Pedhazur, 1973; Schlütter, 1999; Vaze 
and Chiew, 2003). Jewell et al. (1978) suggest the same split ratio but stated also that if limited 
data are available, it is the usual practice to use the larger portion of the data for calibration and 
the smaller portion of the data for validation. 
 
Among modelling approaches, multiple regression models (MRMs) have intermediate 
complexity. This approach has been used widely (e.g. Driver and Tasker, 1990; Saget, 1994). It 
can be considered as simple at first sight. Nevertheless great attention must be paid to hypotheses 
and limits of these models, which are frequently neglected by many users. A MRM aims to 
estimate a single variable by means of a set of other explanatory variables. In this study, the event 
mean concentration (EMC) is evaluated using the rainfall or/and the flow characteristics. 
 
To carry out calibration and validation properly, large datasets are required. Unfortunately, in 
practice, the number of measured events is limited because of the high costs of monitoring 
campaigns and the relatively short time devoted for the studies. Thus engineers and researchers 
are often found dealing with limited datasets to be used for model identification, calibration and 
validation. In this case, what would be the effect of calibration dataset size and characteristics on 
the estimated relationship and how to optimally split the available observations into calibration 
and validation sets? 
 
Three MRMs are implemented in the stormwarter quality module of the French software Canoe 
(Insa/Sogreah, 1999) having all the same structure. The models are presented in Table 1. In an 
attempt to explore the questions above, these models served as a bench test and were applied to 
data from 13 catchments and for three pollutants BOD, COD and SS. 
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Where EL is the event total load ; EMC is the event mean concentration ; ADWP is the antecedent 
dry weather period ; Imax5 is the maximum intensity on 5 minutes period ; Vr is the total runoff 
volume ; TP is total precipitation ; D is the event duration ; K, a, b and c are calibration parameters. 

Table 1 : the three MRMs used in the study 

METHODS 
CALIBRATION DATASET EFFECT 
In order to study the effect of the size and characteristics of calibration datasets on the results of a 
model, subsets were sampled from the available data. The size n of subsets ranged from 4 to N - 2 
where N is the number of available data. For each n a large number of subsets was drawn 
randomly without replacement (typically 1000). In fact the objective is to see how the results of a 
model could vary if a subset of events have been measured instead of all available data for the 
same period of time. Hence in each subset, each event can not occurs more than once and for 
each n, all subsets were distinct. 
 
CALIBRATION 
The type of the model determines the extent of calibration required. The desirable output of the 
model must be considered and be of focus. Generally, a model is calibrated by minimizing the 
distances between calculated and measured values. The sum of the squared errors is one of the 
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criteria most used for calibration. The use of a least squared errors approach infers constancy of 
error variance for all observations. However larger uncertainties in hydrologic variables are 
known to be associated to larger variables values. To cope with this problem, a logarithmic 
transformation is applied for all variables. This transformation achieves stability in the error 
variance, normality of residuals and linearity of the regression model, making it more easy to 
calibrate with ordinary least square method. To allow comparison between data sets 
independently of n, the Root Mean Squared Error (Eq. 1) is used as a measure of goodness of 
calibration. 
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Eq. 1

 
where Oi denotes observations and Ti denotes model outputs. 
Calibration has been performed for the three models shown in Table 1 for BOD, COD and SS 
using data from 13 catchments. Data of 12 catchments have been extracted from the French 
database on stormwater discharges QASTOR (Saget and Chebbo, 1996). The thirteenth 
catchment is "Le Marais" catchment in Paris, France (Chebbo et al., 1999). A summary of the 
available data for each catchment is given in Table 2. 
 

Combined sewer systems   Separated Sewer systems 
Catchment BOD COD SS   Catchment BOD COD SS 
La Briche d11 12 13 13   aixnord  33 41 41 
La Briche dd11 9 9 9   aixzup  41 47 47 
La Briche enghien 10 10 10   ulissud  29 29 29 
La Briche PHI 16 16 16   velizy  22 22 22 
La Briche PLB 16 16 16   Maurepas  59 59 59 
Mantes 23 23 23   ulisnord  57 57 57 
Le Marais - 64 67        

Table 2 : Summary of available data (EMCs) 
 
OPTIMAL DATA SPLIT 
Let Y  denote the 1N ×  vector of the dependent variable to be estimated and X  denote the KN ×  
matrix of independent variables, where N  is the number of observations and K  is the number of 
independent explanatory variables in the model. Suppose that ( )NNN 11 ≤  observations are 
selected randomly from the available dataset for calibration. The relationship between 1Y  and 

1X  can be written as follows: 
 

( ) iii 1,1Xf1Y εβ += ⋅
 Eq. 2

 
where  ⋅i  means that all the ith  row of X  is considered 
  β  is the vector of the estimated parameters of the model 
  1ε  is the ( 1N1 × ) vector of the model calibration errors 
 
Let 2Y  and 2X  denote the 2N  observations held out for validation ( 12 NNN −= ). The 
prediction error is vector 2ε : 
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2Ŷ2Y2 −=ε  Eq. 3

 
where 2Ŷ  is the predicted concentrations given by 
 

( )β,2Xf2Ŷ ii ⋅=  Eq. 4

 
For each possible split of the available data (from N1 = 4, N2 = N - 4 to N1 = N - 2, N2 = 2) a large 
number of random possible splits is available. The number of returned splits was limited to 1000. 
The root mean squared error (RMSE) is used as an overall measure of goodness for validation as 
like as for calibration. 
 
For each value N1 one gets two distributions of the RMSE, one for calibration and one for 
validation. Since the validation aims to prove that the model is able to give results for prediction 
as good as for calibration, the two distributions can be compared. The results showed that the 
distributions are not always normally distributed. Hence the use of non-parametric tests is 
recommended. The idea is to test if the two distributions are identical. The best split will be the 
one that maximizes the probability to have two identical distributions. The most appropriate test 
in our case is the Wilcoxon rank sum test (Hollander and Wolfe, 1973). This is a test of the null 
hypothesis H0 that two samples are drawn from the same distribution, against the alternative 
hypothesis H1 that the distributions have different origins (Figure 1). The test returns the 
significance probability "p" that the two distributions are identical. 
 

 
Figure 1: Illustration of the Wilcoxon test 

RESULTS 
CALIBRATION AND VALIDATION VARIABILITY 
The procedures above were applied to each catchment, for each pollutant and the three models. 
Regardless the model, the pollutant and the catchment that have been used, the distribution 
evolution of the calibration RMSE as a function of the number of data used in calibration is quite 
the same (Figure 2). With only four events used for calibration, the models were able to fit 
perfectly the observations, of course with a different set of parameters for each calibration subset. 
This is not surprising, as it is easy to perfectly fit 4 rainfall events with a model having 4 
calibration parameters. It was found also that generally more than 20 events are necessary to have 
a calibration RMSE distribution centred on the RMSE value obtained using all available data for 
calibration. 
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As well as for calibration distribution, the evolution of the validation distribution was also 
identical for all the catchments and pollutants using the three models. A typical plot is given in 
Figure 3. For n = 4 the RMSE values are very high and situated out of the figure for scale 
purposes. In fact, when few data are used for calibration, the model not only fits the data but it 
fits also measurement errors. In addition to this, data don’t cover enough possible conditions. 
This explains the weakness in prediction ability of the calibrated model. 
 

 
Figure 2 : Typical calibration distributions plot 

 

 
Figure 3 : Typical validation distributions plot 
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An analysis of the calibration subsets giving best results (most likely the RMSE using all data) 
will be carried out to identify potential characterized groups of events. This might help in 
optimising data collection and reducing costs. 
 
DATA SPLIT 
As it was mentioned previously, the Wilcoxon rank sum test was applied to test if the RMSE 
distributions for calibration and validation are identical for each split. For each data split, the 
significance probability is returned. The example of "Le Marais" catchment for COD using model 
M3 is shown in Figure 4. In this case the calibration and validation RMSE distributions are most 
likely identical when using N1 = 49 events for calibration and N2 = N - N1 = 15 events for 
validation. This means that using approximately 25 % of the data for validation is statistically 
optimal. This ratio has been calculated for the three pollutants and the three models. A summary 
of the results is shown in Figure 5. 
 
In Figure 5 the data ratio to be used for validation is drawn as a function of the size of the 
available dataset. Each point on the figures refers to a catchment. Hence, on each figure, 13 
points can be seen except for BOD where only 12 points are present. It is shown that none of the 
optimal splits reached a 50 % ratio for validation. All cases showed data validation ratios less 
than 40 %. 
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Figure 4 : Significance probability for Le Marais catchment for COD using M3 

 
A general increasing trend can be observed for BOD, COD and less obvious for SS. For 
validation data ratio equal to zero, the validation and calibration RMSE distributions are not 
identical for all tested splits. If the number N of available data is less than 30 the optimal 
validation proportion varied between 0 and about 25 %. This proportion ranges from 25 to 40 % 
for N > 30. For SS it is more difficult to draw conclusions because of more dispersed points. For 
COD and SS "Le Marais" catchment (N > 60) reverses the trend and gives less validation 
proportion with higher N. the proportion of the data to be used for validation declines to near 20 
%. One point beyond N = 60 doesn’t allow any generalisation of this trend. 
 



 7

The scatters differ from one pollutant to another and from one model to another. Different model 
and different pollutant means different modelling errors. This gives an indication that N may not 
be the single determinant factor for an optimal split. Other factors like model error to signal ratio 
might tend to influence the optimal split. In fact, one can expect that more data must be used to 
calibrate a less good model or when calibration data have larger measurement errors. 
 
However, it can be thought that beyond a given N (very high) any split might perform well. This 
is due to the fact that even a small proportion of the data can cover most of the possible 
conditions. Unfortunately this is not the case in this field of research where data collection is very 
expensive and only limited number N of data is used in modelling. 
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Figure 5 : summary of optimal split results 

CONCLUSIONS 
In this paper two main issues have been investigated. The first one is the effect of calibration 
dataset size and characteristics on multiple regression models performance. It was found that 
using few data (less than 20) for calibration infers important variability on the results. In addition, 
contrary to lower values of the RMSE for calibration, validation RMSE values can be extremely 
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high and thus the predictive ability of the model is very poor. Multiple regression models are 
found to be very sensitive to calibration data. Outliers can easily affect the calibration results. 
 
The second issue is about the optimal split of available dataset into calibration and validation 
subsets. Results for BOD and COD showed an obvious correlation between the number of 
available data and the optimal proportion to be used for validation and this for N between 10 and 
60. For N less than 20 it was found that that less than 15 % of the available data are to be used for 
validation. The main finding in this part is that the usual split of data into halves is not optimal. 
More data must be allocated for calibration than for validation. Validation proportion did not 
exceed 40 % in all cases.  
 
A further analysis of the relation between the validation ratio and the noise to signal ratio in 
model performance, might explain the differences between the scatters of different pollutants and 
models. Another extension to this work could be the investigation of balanced split sample 
(McCarthy, 1976) instead of random split. The balanced split sample produces subsets covering 
approximately the same conditions, which could partly solve some of the above difficulties. 
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